Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Traffic Inj Prev ; 25(4): 640-648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578292

RESUMO

OBJECTIVE: Occupant impact safety is critical for train development. This paper proposes a systematic procedure for developing validated numerical occupant crash scenarios for high-speed trains by integrating experimental, computational, and inverse methods. METHODS: As the train interior is the most potentially injury-causing factor, the material properties were acquired by mechanical tests, and constitutive models were calibrated using inverse methods. The validity of the seat material constitutive model was further verified via drop tower tests. Finite element (FE) and multibody (MB) models of train occupant-seat interactions in frontal impact were established in LS-DYNA and MADYMO software, respectively, using the experimentally acquired materials/mechanical characteristics. Three dummy sled crash tests with different folding table and backrest configurations were conducted to validate the numerical occupant-seat models and to further assess occupant injury in train collisions. The occupant impact responses between dummy tests and simulations were quantitatively compared using a correlation and analysis (CORA) objective rating method. RESULTS: Results indicated that the experimentally calibrated numerical seat-occupant models could effectively reproduce the occupant responses in bullet train collisions (CORA scores >80%). Compared with the train seat-occupant MB model, the FE model could simulate the head acceleration with slightly more acceptable fidelity, however, the FE model CORA scores were slightly less than for the MB models. The maximum head acceleration was 30 g but the maximum HIC score was 17.4. When opening the folding table, the occupant's chest injury was not obvious, but the neck-table contact and "chokehold" may potentially be severe and require further assessment. CONCLUSIONS: This study demonstrates the value of experimental data for occupant-seat model interactions in train collisions and provides practical help for train interior safety design and formulation of standards for rolling stock interior passive safety.


Assuntos
Acidentes de Trânsito , Traumatismos Torácicos , Humanos , Pescoço , Aceleração , Postura Sentada , Fenômenos Biomecânicos
2.
Data Brief ; 53: 110218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425877

RESUMO

Concrete is a prominent construction material globally, owing to its reputed attributes such as robustness, endurance, optimal functionality, and adaptability. Formulating concrete mixtures poses a formidable challenge, mainly when introducing novel materials and additives and evaluating diverse design resistances. Recent methodologies for projecting concrete performance in fundamental aspects, including compressive strength, flexural strength, tensile strength, and durability (encompassing homogeneity, porosity, and internal structure), exist. However, actual approaches need more diversity in the materials and properties considered in their analyses. This dataset outlines the outcomes of an extensive 10-year laboratory investigation into concrete materials involving mechanical tests and non-destructive assessments within a comprehensive dataset denoted as ConcreteXAI. This dataset encompasses evaluations of mechanical performances and non-destructive tests. ConcreteXAI integrates a spectrum of analyzed mixtures comprising twelve distinct concrete formulations incorporating diverse additives and aggregate types. The dataset encompasses 18,480 data points, establishing itself as a cutting-edge resource for concrete analysis. ConcreteXAI acknowledges the influence of artificial intelligence techniques in various science fields. Emphatically, deep learning emerges as a precise methodology for analyzing and constructing predictive models. ConcreteXAI is designed to seamlessly integrate with deep learning models, enabling direct application of these models to predict or estimate desired attributes. Consequently, this dataset offers a resourceful avenue for researchers to develop high-quality prediction models for both mechanical and non-destructive tests on concrete elements, employing advanced deep learning techniques.

3.
Heliyon ; 10(5): e26796, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444492

RESUMO

Regeneration of injured tendons and ligaments (T/L) is a worldwide need. In this study electrospun hierarchical scaffolds made of a poly-L (lactic) acid/collagen blend were developed reproducing all the multiscale levels of aggregation of these tissues. Scanning electron microscopy, microCT and tensile mechanical tests were carried out, including a multiscale digital volume correlation analysis to measure the full-field strain distribution of electrospun structures. The principal strains (εp1 and εp3) described the pattern of strains caused by the nanofibers rearrangement, while the deviatoric strains (εD) revealed the related internal sliding of nanofibers and bundles. The results of this study confirmed the biomimicry of such electrospun hierarchical scaffolds, paving the way to further tissue engineering and clinical applications.

4.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542842

RESUMO

This study concentrates on assessing the insecticidal attributes of the γ-Al2O3 nanoparticles derived from the remnants of Mentha pulegium, which include essential oil, ethanolic extract, and plant waste. The synthesis of the γ-Al2O3 nanoparticles was executed using a direct sol-gel procedure, affirming the crystal structure according to extensive physicochemical analyses such as UV-Vis, XRD, FTIR, and SEM. Evaluation of the insecticidal activity in vitro was conducted against Xylosandrus crassiusculus, a pest that infests carob wood, utilizing strains from diverse forests in the Khenifra region, situated in the Moroccan Middle Atlas. The lethal doses 50 ranged from 40 mg/g to 68 mg/g, indicating moderate effectiveness compared to the commercial insecticide Permethrin. Optimization of the conditions for the efficiency of the γ-Al2O3 nanoparticles was determined using experimental plans, revealing that time, humidity, and temperature were influential factors in the lethal dose 50 of these nanomaterials. Moreover, this study encompasses the establishment of correlations using Principal Component Analysis (PCA) and Ascending Hierarchical Classification (AHC) among various geographic, biological, and physical data, amalgamating geographic altitude and γ-Al2O3 nanoparticle insecticide parameters, as well as the attributes of the mechanical tests conducted on the carob wood affected by insects. The correlations highlight the close connections between the effectiveness of the insecticide, mountain altitude, and the mechanical parameters that were examined. Ultimately, these nanoparticles demonstrate promising potential as alternative insecticides, thus opening up encouraging prospects for safeguarding against carob wood pests.


Assuntos
Besouros , Galactanos , Inseticidas , Mananas , Mentha pulegium , Nanopartículas , Gomas Vegetais , Gorgulhos , Animais , Inseticidas/farmacologia , Inseticidas/química , Mentha pulegium/química
5.
Int Endod J ; 57(5): 601-616, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376108

RESUMO

AIM: To compare eight large- and low-tapered heat-treated reciprocating instruments regarding their design, metallurgy, mechanical properties, and irrigation flow through an in silico model. METHODOLOGY: A total of 472 new 25-mm E-Flex Rex (25/.04 and 25/.06), Excalibur (25/.05), Procodile (25/.06), Reciproc Blue R25 (25/.08v), WaveOne Gold Primary (25/.07v), and Univy Sense (25/.04 and 25/.06) instruments were evaluated regarding their design (stereomicroscopy, scanning electron microscopy, and 3D surface scanning), metallurgy (energy-dispersive X-ray spectroscopy and differential scanning calorimetry), and mechanical performance (cyclic fatigue, torsional resistance, cutting ability, bending and buckling resistance). Computational fluid dynamics assessment was also conducted to determine the irrigation flow pattern, apical pressure, and wall shear stress in simulated canal preparations. Kruskal-Wallis and one-way anova post hoc Tukey tests were used for statistical comparisons (α = 5%). RESULTS: Instruments presented variations in blade numbers, helical angles, and tip designs, with all featuring non-active tips, symmetrical blades, and equiatomic nickel-titanium ratios. Cross-sectional designs exhibited an S-shaped geometry, except for WaveOne Gold. Univy 25/.04 and Reciproc Blue displayed the smallest and largest core diameters at D3. Univy 25/.04 and E-Flex Rec 25/.04 demonstrated the longest time to fracture (p < .05). Reciproc Blue and Univy 25/.04 exhibited the highest and lowest torque to fracture, respectively (p < .05). Univy 25/.04 and Reciproc Blue had the highest rotation angles, whilst E-Flex Rec 25/.06 showed the lowest angle (p < .05). The better cutting ability was observed with E-Flex Rec 25/.06, Procodile, Excalibur, and Reciproc Blue (p > .05). Reciproc R25 and E-Flex Rec showed the highest buckling resistance values (p < .05), with WaveOne Gold being the least flexible instrument. The impact of instruments' size and taper on wall shear stress and apical pressure did not follow a distinct pattern, although Univy 25/.04 and E-Flex Rec 25/.06 yielded the highest and lowest values for both parameters, respectively. CONCLUSIONS: Low-tapered reciprocating instruments exhibit increased flexibility, higher time to fracture, and greater angles of rotation, coupled with reduced maximum bending loads and buckling strength compared to large-tapered instruments. Nevertheless, low-tapered systems also exhibit lower maximum torque to fracture and inferior cutting ability, contributing to a narrower apical canal enlargement that may compromise the penetration of irrigants in that region.


Assuntos
Instrumentos Odontológicos , Titânio , Estudos Transversais , Desenho de Equipamento , Teste de Materiais , Estresse Mecânico , Titânio/química , Preparo de Canal Radicular , Metalurgia
6.
ACS Nano ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334316

RESUMO

Erucamide is known to play a critical role in modifying polymer fiber surface chemistry and morphology. However, its effects on fiber crystallinity and mechanical properties remain to be understood. Here, synchrotron nanofocused X-ray Diffraction (nXRD) revealed a bimodal orientation of the constituent polymer chains aligned along the fiber axis and cross-section, respectively. Erucamide promoted crystallinity in the fiber, leading to larger and more numerous lamellae crystallites. The nXRD nanostructual characterization is complemented by single-fiber uniaxial tensile tests, which showed that erucamide significantly affected fiber mechanical properties, decreasing fiber tensile strength and stiffness but enhancing fiber toughness, fracture strain, and ductility. To correlate these single-fiber nXRD and mechanical test results, we propose that erucamide mediated slip at the interfaces between crystallites and amorphous domains during stress-induced single-fiber crystallization, also decreasing the stress arising from the shear displacement of microfibrils and deformation of the macromolecular network. Linking the single-fiber crystal structure with the single-fiber mechanical properties, these findings provide the direct evidence on a single-fiber level for the role of erucamide in enhancing fiber "softness".

7.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257632

RESUMO

Shore hardness (SH) is a cost-effective and easy-to-use method to assess soft tissue biomechanics. Its use for the plantar soft tissue could enhance the clinical management of conditions such as diabetic foot complications, but its validity and reliability remain unclear. Twenty healthy adults were recruited for this study. Validity and reliability were assessed across six different plantar sites. The validity was assessed against shear wave (SW) elastography (the gold standard). SH was measured by two examiners to assess inter-rater reliability. Testing was repeated following a test/retest study design to assess intra-rater reliability. SH was significantly correlated with SW speed measured in the skin or in the microchamber layer of the first metatarsal head (MetHead), third MetHead and rearfoot. Intraclass correlation coefficients and Bland-Altman plots of limits of agreement indicated satisfactory levels of reliability for these sites. No significant correlation between SH and SW elastography was found for the hallux, 5th MetHead or midfoot. Reliability for these sites was also compromised. SH is a valid and reliable measurement for plantar soft tissue biomechanics in the first MetHead, the third MetHead and the rearfoot. Our results do not support the use of SH for the hallux, 5th MetHead or midfoot.


Assuntos
Ossos do Metatarso , Adulto , Humanos , Fenômenos Biomecânicos , Dureza , Reprodutibilidade dos Testes , Pé/diagnóstico por imagem
9.
Biomedicines ; 11(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137506

RESUMO

We evaluated and compared the biomechanical properties of Leukocyte-and Platelet Rich Fibrin L-PRF clots and membranes derived from smoker and nonsmoker donors. Twenty venous-blood donors (aged 18 to 50 years) were included after signing informed consent forms. L-PRF clots were analyzed and then compressed to obtain L-PRF membranes. L-PRF clot and membrane samples were tested in quasi-static uniaxial tension and the stress-stretch response was registered and characterized. Furthermore, scanning electron microscope representative images were taken to see the fibrin structure from both groups. The analysis of stress-stretch curves allowed us to evaluate the statistical significance in differences between smoker and nonsmoker groups. L-PRF membranes showed a stiffer response and higher tensile strength when compared to L-PRF clots. However, no statistically significant differences were found between samples from smokers and nonsmokers. With the limitations of our in vitro study, we can suggest that the tensile properties of L-PRF clots and membranes from the blood of smokers and nonsmokers are similar. More studies are necessary to fully characterize the effect of smoking on the biomechanical behavior of this platelet concentrate, to further encourage its use as an alternative to promote wound healing in smokers.

10.
J Mech Behav Biomed Mater ; 148: 106219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951146

RESUMO

In this study, a three-component biofilm for rapid wound dressing consisting of polyvinyl alcohol (PVA)/tannic acid (TA)/with CuO/SiO2 with different percentages (0, 5, 10, and 15 wt% NPs) is evaluated. In addition to controlling bleeding and absorption of blood and wound secretions, it protects the damaged tissue from the attack of microbes. It protects against viruses and thus reduces the treatment time. Analysis of biofilms morphology is performed by Field emission scanning electron microscopy (FE-SEM), phases in biofilms were analyzed by X-ray diffraction (XRD) analysis, chemical bonds, and functional groups are analyzed by Fourier transform infrared (FTIR) spectroscopy, and mechanical tests are performed to evaluate the strength of the samples. The thermogravimetric analysis (TGA) is applied to estimate the thermal stability of the biopolymer films with various percentages of CuO/SiO2 nanoparticles. Also, antibacterial test, bioactivity of the biofilms, the percentage of swelling ratio, and porosity of the samples were examined by immersing the samples in simulated body fluid (SBF) and Phosphate-buffered saline (PBS) for 14 days in vitro. The composite makeup of the TA/PVA sample, comprising 15 wt % CuO/SiO2 and containing 15 wt% of nanoparticles, exhibited superior heat resistance compared to other samples by an increase of 50 °C. This improvement can be attributed to the nanoparticles reaching their saturation point. The swelling ratio was assessed in both SBF and PBS, and in both instances, the sample increased by up to 10 wt% before decreasing, indicating the saturation of the nanoparticles.


Assuntos
Materiais Biocompatíveis , Álcool de Polivinil , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Dióxido de Silício/farmacologia , Polímeros , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Heliyon ; 9(9): e20194, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809432

RESUMO

The global production of polymer materials has exploded in the last few decades. Their mechanical properties, erosion and corrosion resistance, good performance as insulation materials, and their ease and flexibility of manufacturing have made polymers one of the most widely used materials in the industry and in daily life. Several institutions and governments are beginning to raise serious environmental and ecological concerns with international impact soon, due to the increasing level of polymer production, which does not seem to be slowing down. It is necessary for the scientific community to make efforts in the development and evaluation of new methodologies to enable the inclusion of these types of materials in the circular economy of various production sectors. This is important in order to reduce the ecological impact caused by the current global production level of polymers. One of the most used methods for the recovery of polymeric materials is energy valorization through thermochemical processes. An example of this is thermal gasification using fuels composed of biomass and a mixture of polymeric waste from electrical and electronic equipment (WEEE). Through this thermochemical process, high-energy value synthesis gas, with a high concentration of hydrogen, is obtained on one hand, while waste products in the form of chars, ashes and slag are generated on the other hand. This manuscript presents a detailed study methodology that begins with chemical analysis of the raw material and includes subsequent analysis of mechanical results for the revaluation of these residual inert by-products, using them as partial substitutes in cement clinker to produce building mortars. This described methodology influences directly in the LCC (Life Cycle Costing) of final designed products in plastic and extend material life cycle Plastic materials are here to stay, so the study and optimization of polymer waste recovery processes are vital in achieving the Sustainable Development Goals (SDGs) set by the European Union in terms of efficiency and sustainability. It is also the only possible way to create an environmentally sustainable future world for future generations. After applying the described methodology, the mechanical test results show that the modified mortars exhibit established behaviour during the hardening time and similar strength growth compared to commercial mortars. The maximum mechanical strengths achieved, including compressive and flexural strength, make modified mortars a viable choice for several applications in the civil engineering sector.

12.
J Dent Res ; 102(10): 1106-1113, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37448337

RESUMO

Chemical and mechanical fatigue degradation in ceramic materials is generally inconspicuous yet ubiquitous, to the effect that clinical fractures still consist of the main cause of failure in all-ceramic restorations. Implications of this span wide, from a reduced survival prognosis for the affected teeth, including more frequent and increasingly invasive procedural interventions, to the financial burden borne by individuals and health care systems. To suffice as an effective corrective, restoration lifetimes need only to be extended so to outlive the patient. That opens a box of problems from a materials science standpoint, entailing inherent deficiencies of brittle materials to resist mechanical and environmental challenges. Efforts in developing more damage-tolerant and fatigue-resistant restoratives go thus hand in hand with understanding intrinsic mechanisms of crack growth behavior under conditions that simulate the oral environment. Here we developed experiments using size-relevant sharp precracked specimens with controlled size and geometry (truncated semielliptical crack in the surface-crack-in-biaxial-flexure method) to establish a relationship between crack size and strength. The tangent method was used to construct envelopes for the quasi-static resistance curves (R-curves), which served as template for deriving residual cyclic R-curve analogs. By means of experimentally obtained stress-cycle curves, lifetime and fatigue parameters were employed within a mechanistic framework to reveal constitutive toughening mechanisms during subcritical growth under cyclic loading in a wet environment. Using 3 modern dental lithium disilicate glass-ceramics, we demonstrate the extent of R-curve degradation up to a threshold of 10 million cycles (~30 y in service) and draw parallels between the scope of fatigue degradation and the size of the microstructural units responsible for toughening mechanisms in glass-ceramic materials. Our results indicate that larger microstructural elements endow glass-ceramics with a higher reaching quasi-static R-curve at the onset but degrading more rapidly to comparable levels of lithium disilicates having submicrometric and nanometric crystal phases.


Assuntos
Desenho Assistido por Computador , Porcelana Dentária , Humanos , Teste de Materiais , Análise do Estresse Dentário , Porcelana Dentária/química , Cerâmica/química , Propriedades de Superfície , Falha de Restauração Dentária
13.
Dent Mater ; 39(9): 790-799, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37455205

RESUMO

OBJECTIVES: This study aimed to modify an experimental dental composite using a synthesized nano-structured methacrylated zirconium-based MOF to enhance physical/mechanical properties. METHODS: The previously known Uio-66-NH2 MOF was first synthesized and post-modified with Glycidyl Methacrylate (GMA). Fourier Transform Infrared (FTIR) Spectroscopy and CHNS analysis confirmed the post-modification reaction. The prepared filler was investigated by XRD, BET, SEM-EDS, and TEM. The experimental composite was prepared by mixing 60% wt. of resin matrix with 40% wt. of fillers, including silanized silica (SS) or Uio-66-NH-Me (UM). The experimental composites' depth of cure (DPC) was investigated in five groups (G1 =40% SS, G2 =30%SS+10%UM, G3 =20%SS+20%UM, G4 =10%SS+30%UM, G5 =40%UM). Then flexural strength(FS), Elastic Modulus(EM), solubility(S), water sorption(WS), degree of conversion(DC), polymerization shrinkage(PS), and polymerization stress(PSR) of the groups with DPC of more than 1 mm were investigated. Finally, the cytotoxicity of composites was studied. RESULTS: The groups with more than 20% wt. UM, filler (G4, G5) had lesser than 1 mm DPC. Therefore, we investigated three groups' physical and mechanical properties with lower than 20% UM filler (G1-G3). Within these groups, G3 has a higher FS, EM (P < 0.05), and lower WS and S (P < 0.05). DC dropped in G2 and G3 compared to G1 (p < 0.05), but there was no significant difference between G2 and G3 (P = 0.594). SIGNIFICANCE: This new filler is an innovative coupling-agent free filler and can be part of dental filler technology itself. It can also introduce a new group of dental fillers based on MOFs, but it still needs a complete investigation to be widely used.


Assuntos
Resinas Compostas , Estruturas Metalorgânicas , Resinas Compostas/química , Bis-Fenol A-Glicidil Metacrilato/química , Zircônio , Ácidos Polimetacrílicos/química , Propriedades de Superfície , Polietilenoglicóis/química , Metacrilatos/química , Dióxido de Silício/química , Teste de Materiais
14.
Biomimetics (Basel) ; 8(2)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37366827

RESUMO

Fish skin is a biological material with high flexibility and compliance and can provide good mechanical protection against sharp punctures. This unusual structural function makes fish skin a potential biomimetic design model for flexible, protective, and locomotory systems. In this work, tensile fracture tests, bending tests, and calculation analyses were conducted to study the toughening mechanism of sturgeon fish skin, the bending response of the whole Chinese sturgeon, and the effect of bony plates on the flexural stiffness of the fish body. Morphological observations showed some placoid scales with drag-reduction functions on the skin surface of the Chinese sturgeon. The mechanical tests revealed that the sturgeon fish skin displayed good fracture toughness. Moreover, flexural stiffness decreased gradually from the anterior region to the posterior region of the fish body, which means that the posterior region (near the tail) had higher flexibility. Under large bending deformation, the bony plates had a specific inhibition effect on the bending deformation of the fish body, especially in the posterior region of the fish body. Furthermore, the test results of the dermis-cut samples showed that the sturgeon fish skin had a significant impact on flexural stiffness, and the fish skin could act as an external tendon to promote effective swimming motion.

15.
Gen Dent ; 71(4): 58-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37358585

RESUMO

Polyetheretherketone (PEEK) resin is a high-performance thermoplastic polymer that has been introduced as a possible candidate to replace metallic components in dental prostheses. The objective of this integrative review was to compare, through analysis of studies in the literature, the mechanical performance of removable partial denture frameworks and clasps manufactured with PEEK with the performance of cobalt-chromium (Co-Cr) frameworks and clasps. The guiding question was, "Does the use of PEEK as a substitute for Co-Cr alloys for the construction of removable partial denture frameworks result in better mechanical properties?" The PubMed/ MEDLINE, Embase, Web of Science, Scopus, and SciELO databases were searched for articles published through October 2021. The JBI Critical Appraisal Checklist for Quasi-Experimental Studies was used to assess the methodologic quality of the selected in vitro studies. A total of 208 articles were identified. After the exclusion of duplicates and articles that did not meet the inclusion criteria, 7 studies- -4 in vitro and 3 three-dimensional finite element analyses- -published between 2012 and 2021 were included in the integrative review. The appraisal checklist revealed that the reviewed studies had a low risk of bias and high methodologic quality. The results of the review showed that PEEK alloys have adequate mechanical properties for use in clasps and removable partial denture frameworks, but Co-Cr alloys exhibit better mechanical properties and are more suitable in most circumstances.


Assuntos
Prótese Parcial Removível , Humanos , Grampos Dentários , Ligas de Cromo , Polímeros , Polietilenoglicóis/uso terapêutico , Cetonas
16.
Dent Res J (Isfahan) ; 20: 37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180695

RESUMO

Background: Polymethyl methacrylate resin is widely used in orthodontic treatments. Graphene oxide (GO) has reactive functional groups on its surface that facilitate binding to various materials such as polymers, biomolecules, DNA, and proteins. This study aimed to investigate the impact of adding functionalized GO nanosheets on the physical, mechanical, cytotoxicity, and anti-biofilm properties of acrylic resin. Materials and Methods: In this experimental study, fifty samples (for each test) were divided into groups of 10, in the form of acrylic resin discs with concentrations of 0, 0.25, 0.5, 1, and 2 weight percentage (wt%) of functionalized GO nanosheets and also the control group. Samples were evaluated in terms of physical properties (surface hardness, surface roughness, compressive strength, fracture toughness, and flexural strength), anti-biofilm properties (On four groups of micro-organisms, including Streptococcus mutans, Streptococcus sanguis, Staphylococcus aureus, and Candida albicans), and cytotoxicity. Data were analyzed using SPSS software version 22, descriptive statistics, one-way analysis of variance test, and Tukey post hoc test. The significance level was considered P < 0.05. Results: No significant difference was observed between the different groups with weight percentages of 0.25, 0.5, 1, and 2% nano GO (nGO) and the control group (without nGO) in terms of surface roughness and toughness. However, compressive strength, three-point flexural strength, and surface hardness showed significant differences between the groups. Furthermore, the degree of cytotoxicity increased by increasing the weight percentage of nano-GO. Conclusion: The addition of functionalized nGO in appropriate concentrations to polymethyl methacrylate can improve the anti-bacterial and anti-fungal biofilm properties without changing or increasing their physical and mechanical properties.

17.
Polymers (Basel) ; 15(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37177159

RESUMO

The effect of short carbon fiber (SCF) filler on the mechanical properties of 3D-printed acrylonitrile butadiene styrene (ABS) was investigated. The fused filament fabrication (FFF) method was used for the manufacturing of samples. Elastic properties and strength characteristics of samples made of conventional ABS and SCF-reinforced ABS were compared in tensile and bending tests. Fracture toughness and critical strain energy release rate were also determined. In addition, 3D-printed monofilament SCF-reinforced samples were fabricated, the internal structure of which was analyzed using microcomputed tomography (micro-CT). Based on the tomography data, finite-element (FE) models of representative volume elements (RVEs) of the reinforced material were created and used for the numerical calculation of effective characteristics. Numerical and experimental results for the effective elastic properties were compared with the Mori-Tanaka homogenization technique. The ABS samples filled with SCF showed considerably higher mechanical characteristics than those of the conventional ABS. Finally, the dependence between the strength characteristics and elastic properties of the samples on the diameter of the nozzle used for 3D printing was established. 3D-printed ABS reinforced with SCF demonstrated a gain in tensile strength and fracture toughness by 30% and 20%, respectively. Interlayer adhesion strength in flexure tests showed an increase of 28% compared to pure ABS samples.

18.
Int J Biol Macromol ; 241: 124572, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100326

RESUMO

In this research, gelatin (Ge), tannic acid (TA), acrylic acid (AA) as a matrix are used. Zinc oxide (ZnO) nanoparticles (10, 20, 30, 40 and 50 wt%) and hollow silver nanoparticles along with ascorbic acid (1, 3, and 5 wt%) are considered as reinforcement. In order to prove the functional groups of nanoparticles made from Fourier-transform infrared spectroscopy (FTIR), and determine the existing phases of the powders in the hydrogel, X-ray diffraction (XRD) is used, also to investigate the morphology, size, and porosity of the holes and in the scaffolds, scanning electron microscope analysis is used (FESEM). Then, mechanical tests such as tension and compression test are performed to determine the most optimal state of the composite. Also, the antibacterial test is performed for the manufactured powders and hydrogel, as well as the toxicity test for the fabricated hydrogel. The results show that the sample (30 wt% of zinc oxide and 5 wt% of hollow nanoparticles) is the most optimal hydrogel based on mechanical tests and biological properties.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Óxido de Zinco , Óxido de Zinco/química , Porosidade , Gelatina/química , Prata/química , Nanopartículas Metálicas/química , Dióxido de Silício , Pós , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Cicatrização , Nanocompostos/química , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Musculoskelet Surg ; 107(4): 397-403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37029888

RESUMO

PURPOSE: To investigate the effect of the rod-to-rod distance on the mechanical stability of single-rod and double-rod external fixator frames. METHODS:  Four different constructs, one single-rod and three double-rod constructs with different rod-rod distances, were subjected to the axial, bending, and torsional forces. The stiffness of different configurations was calculated. RESULTS:  Single-rod configuration had statistically the lowest stiffness when subjected to the axial, bending, and torsional forces. Maximum stiffness against the axial and anterior-posterior bending forces was achieved when the rod-rod distance was adjusted to 50 mm (halfway between the first rod and the end of the Schanz pins). There was no statistically significant difference in lateral bending stiffness among different double-rod configurations (p value: 0.435). The maximum stiffness against torsional forces was achieved when the rod-rod distance was adjusted to 100 mm (the second rod at the end of the Schanz pins). CONCLUSION:  Double-rod uniplanar external fixator frames are significantly stiffer than the single-rod constructs, and however, the rod-rod distance can significantly affect the construct stiffness. We found that a frame with 50 mm rod-rod distance was the optimum fixator among tested configurations that allowed a balance between axial, bending, and torsional stiffness of the construct.


Assuntos
Pinos Ortopédicos , Fixadores Externos , Humanos , Fenômenos Biomecânicos
20.
Restor Dent Endod ; 48(1): e4, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36875808

RESUMO

Objectives: This study aimed to compare the torsional and cyclic fatigue resistance of ProGlider (PG), WaveOne Gold Glider (WGG), and TruNatomy Glider (TNG). Materials and Methods: A total of 15 instruments of each glide path system (n = 15) were used for each test. A custom-made device simulating an angle of 90° and a radius of 5 millimeters was used to assess cyclic fatigue resistance, with calculation of number of cycles to failure. Torsional fatigue resistance was assessed by maximum torque and angle of rotation. Fractured instruments were examined by scanning electron microscopy (SEM). Data were analyzed with Shapiro-Wilk and Kruskal-Wallis tests, and the significance level was set at 5%. Results: The WGG group showed greater cyclic fatigue resistance than the PG and TNG groups (p < 0.05). In the torsional fatigue test, the TNG group showed a higher angle of rotation, followed by the PG and WGG groups (p < 0.05). The TNG group was superior to the PG group in torsional resistance (p < 0.05). SEM analysis revealed ductile morphology, typical of the 2 fracture modes: cyclic fatigue and torsional fatigue. Conclusions: Reciprocating WGG instruments showed greater cyclic fatigue resistance, while TNG instruments were better in torsional fatigue resistance. The significance of these findings lies in the identification of the instruments' clinical applicability to guide the choice of the most appropriate instrument and enable the clinician to provide a more predictable glide path preparation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...